Problem Set 15.1: The standard model

- 1. The hundreds of known particles are all made from: 6 quarks, 6 leptons, 6 antiquarks, 6 antileptons, and the force carriers.
- 2. Neutrons and protons are made up of quarks, which are held together by gluons Electrons are fundamental particles and are classified as leptons.
- 3. Baryons and mesons are hadrons.

BARYONS - are any hadron made of three quarks (qqq). Protons and neutrons are baryons because they are each made of three quarks – protons two up and one down quark (uud) and neutrons one up and two down (udd).

MESONS are hadrons made from a quark and its anti-quark (eg pion or pi-meson). One example of a meson is a pion (+), which is made of an up quark and a down anitiquark. The antiparticle of a meson just has its quark and antiquark switched, so an antipion (-) is made of a down quark and an up antiquark. Because a meson consists of a particle and an antiparticle, it is very unstable. The K meson lives much longer than most mesons, which is why it was called "strange" and gave this name to the strange quark, one of its components.

- 4. Both muon and antimuon have a mass of 105.66 MeV/c². (Assuming the particles are slow moving)
 - (a) The two photons will each have energies of 105.66MeV.
 - (b) Using $E = hv = hc/\lambda$

$$\lambda = hc/E = 6.62 \times 10^{-34} \times 3 \times 10^{8} / (105.66 \times 10^{6} \times 1.6 \times 10^{-19}) = 1.18 \times 10^{-14}$$

- (c) Two photons are required to conserve momentum
- (d) They must travel in opposite directions to conserve momentum
- (e) The photons are in the gamma radiation part of the e/m spectrum.
- 5. (a) $n \rightarrow p + e^{-} +$

	CHARGE	BARYON No.	LEPTON No.
LHS	0	1	0
RHS	0	1	1
Balance	0	0	-1

An anti-neutrino is required on the RHS to balance

(b)
$$\underline{\hspace{1cm}}$$
 + n \rightarrow $\underline{\hspace{1cm}}$ + e

	CHARGE	BARYON No.	LEPTON No.
LHS	0	1	0
RHS	-1	0	1
Balance	1	-1	 -1

electron antineutrino(LHS) and proton (RHS)

(c)
$$\pi^+ \rightarrow \mu^+ +$$

CHARGE	BARYON No.	LEPTON No.	
--------	------------	------------	--

Revolutions in Modern Physics

JE=ht

LHS	1	0	0
RHS	1	0	-1
Balance	0	0	4-1

A muon antineutrino is given off.

(d) p
$$\rightarrow$$
 n + ν_e + ____

	CHARGE	BARYON No.	LEPTON No.
LHS	.0+1	1	20
RHS	20	1	06+1
Balance	+1	0	→1

An antimuon e+ position

- 6. Each γ -ray must have energy of 51**2**keV (the rest energy of an electron and positron). To conserve momentum two γ -rays are produced travelling in opposite directions.
- 7. Positrons will travel anti-clockwise
- 8. Yes an object can accelerate while keeping the same speed, it they are undergoing circular motion at constant angular velocity.
- 9. Conservation of momentum is violated the particles have momentum in the y-direction (toward top of page) which they didn't possess before the collision.
- 10. (a) Friction is caused by residual electromagnetic interactions between the atoms of the two materials. The force carriers are photons and W and Z bosons.
 - (b) Nuclear bonding is caused by residual strong interactions between the various parts of the nucleus. The force carriers are gluons.
 - (c) The planets orbits due to gravitons.
- 11. (a) Weak and Gravity interactions act on neutrinos
 - (b) Weak (W+, W-, and Z) interactions have heavy carriers
 - (c) All of interactions act on the protons in you
- 12. Gluons cannot be isolated because they carry colour charge themselves.
- 13. Gravitons are hypothetical particles to explain the 'force' of gravity. They have not been observed. (Gluons have been observed indirectly.)

